
Data Mining and Machine Learning

Lecture 1: Introduction to learning algorithms and data mining
Dr Sarat Moka UNSW, Sydney

Key subtopics

• Data Mining vs Machine Learning

• Gradient descent

• Linear regression

• Correlation coefficient and R2 Score

• Logistic regression

• Measurements of error

• Bias and variance

• Cross validation

• Confusion matrix

• Receiver Operating Characteristics (ROC) curve and Area Under The Curve (AUC)

• Regularisation

• One hot encoding

Books:

(A) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd Ed.)
by Aurélien Géron (2019).

(B) Mathematical Engineering of Deep Learning book by Liquet, Moka, and Nazarathy
(2024).

1-1

https://deeplearningmath.org/

Lecture 1: UNSW, Sydney 1-2

1.1 Data Mining vs Machine Learning

What is data mining (DM)?

Data mining is the process of discovering patterns, trends, and insights from large datasets
using various techniques from statistics, machine learning, and database systems. It involves
analyzing large volumes of data to uncover hidden patterns, relationships, and knowledge
that can be used to make informed decisions, predict future trends, or optimize processes.

Key aspects of data mining include:

1. Data Preparation: This involves collecting, cleaning, and preprocessing raw data to
ensure its quality and suitability for analysis. Data preprocessing may include tasks
such as handling missing values, removing outliers, and transforming variables.

2. Exploratory Data Analysis (EDA): EDA involves exploring the data visually and
statistically to gain insights into its structure, distribution, and relationships between
variables. Techniques such as summary statistics, data visualization, and correlation
analysis are commonly used in EDA.

3. Feature Selection and Engineering: Feature selection involves identifying the most
relevant variables or features that are predictive of the target variable. Feature engi-
neering involves creating new features from existing ones to improve model perfor-
mance.

4. Model Building and Evaluation: This involves selecting appropriate machine learn-
ing or statistical models, training them on the data, and evaluating their performance
using various metrics. Common data mining techniques include classification, regres-
sion, clustering, association rule mining, and anomaly detection.

5. Interpretation and Visualization: After building and evaluating models, it’s es-
sential to interpret the results and communicate insights effectively. Visualization
techniques such as charts, graphs, and dashboards are often used to present findings
in a clear and understandable manner.

Data mining is widely used across various industries and domains, including finance, health-
care, marketing, retail, and telecommunications. It helps organizations make data-driven
decisions, improve business processes, detect fraud, identify customer segments, and opti-
mize operations. With the increasing availability of big data and advanced analytics tools,
data mining continues to play a crucial role in extracting actionable insights from complex
datasets.

Lecture 1: UNSW, Sydney 1-3

What is machine learning (ML)?

Machine learning focuses on the development of algorithms and statistical models that enable
computers to learn from and make predictions or decisions based on data, without being
explicitly programmed to perform specific tasks. In essence, machine learning algorithms
learn patterns and relationships from data to improve their performance over time.

Key aspects of machine learning include:

1. Learning from Data: Machine learning algorithms learn from example data, known
as training data, to identify patterns, trends, and relationships that can be used to
make predictions or decisions on new, unseen data. The quality and quantity of the
training data are crucial factors in the performance of machine learning models.

2. Generalization: Machine learning algorithms aim to generalize patterns learned from
the training data to make accurate predictions or decisions on new, unseen data. Gen-
eralization ensures that the model can perform well on data it has not encountered
during training.

3. Types of Learning: Machine learning can be broadly categorized into three main
types of learning:

– Supervised Learning: In supervised learning, the algorithm learns from labeled data,
where each example is associated with a target output. The goal is to learn a mapping
from input variables to output variables.

– Unsupervised Learning: In unsupervised learning, the algorithm learns from unla-
beled data, where the goal is to discover hidden patterns or structures in the data
without explicit guidance.

– Reinforcement Learning: In reinforcement learning, the algorithm learns to make
sequential decisions by interacting with an environment and receiving feedback in the
form of rewards or penalties.

4. Algorithms and Models: Machine learning algorithms encompass a wide range
of techniques and models, including decision trees, random forests, support vector
machines, neural networks, and clustering algorithms, among others. Each algorithm
is suited to different types of tasks and data.

5. Applications: Machine learning has applications across various domains, including
but not limited to:

- Natural Language Processing (NLP)

- Computer Vision

- Speech Recognition

Lecture 1: UNSW, Sydney 1-4

- Recommender Systems

- Predictive Analytics

- Healthcare

- Finance

- Autonomous Vehicles

In summary, machine learning enables computers to learn from data and make predictions
or decisions in complex and uncertain environments, making it a powerful tool for solving a
wide range of real-world problems.

What is the relationship between DM and ML?

Data mining and machine learning are closely related fields that share many common tech-
niques and objectives, but they also have some key differences.

1. Objective:

- Data Mining: The primary objective of data mining is to extract useful information
and insights from large datasets. It focuses on discovering patterns, trends, and re-
lationships in data to help businesses make better decisions and gain a competitive
advantage.

- Machine Learning: Machine learning aims to develop algorithms and models that
enable computers to learn from data and make predictions or decisions without being
explicitly programmed. It focuses on building predictive models that can generalize
from training data to new, unseen data.

2. Techniques:

- Data Mining: Data mining techniques include exploratory data analysis, clustering,
association rule mining, anomaly detection, and visualization. These techniques are
used to uncover hidden patterns and structures in data.

-Machine Learning: Machine learning techniques include supervised learning, unsuper-
vised learning, reinforcement learning, and semi-supervised learning. These techniques
involve training algorithms on labeled or unlabeled data to learn patterns and make
predictions or decisions.

3. Data Types:

- Data Mining: Data mining often deals with structured and unstructured data from
various sources, including databases, text documents, images, and sensor data.

Lecture 1: UNSW, Sydney 1-5

- Machine Learning: Machine learning algorithms can handle various types of data,
including numerical data, categorical data, text data, and image data. The choice of
algorithm depends on the type and characteristics of the data.

4. Applications:

- Data Mining: Data mining is used in various industries and domains, including
marketing, finance, healthcare, retail, telecommunications, and manufacturing. It helps
businesses analyze customer behavior, detect fraud, optimize processes, and improve
decision-making.

- Machine Learning: Machine learning has a wide range of applications, including nat-
ural language processing, computer vision, speech recognition, recommender systems,
predictive analytics, autonomous vehicles, and robotics.

5. Overlap:

- There is significant overlap between data mining and machine learning, as both fields
use statistical and computational techniques to analyze and extract knowledge from
data.

- Many machine learning algorithms, such as decision trees, support vector machines,
neural networks, and k-means clustering, are also used in data mining.

- Conversely, data mining techniques, such as association rule mining and clustering,
can be considered as specific applications of machine learning.

In conclusion, data mining and machine learning are closely related fields that share common
objectives and techniques but have distinct focuses and applications. They complement each
other and are often used together to extract valuable insights and knowledge from data.

Further details on the overlap between DM and ML

While data mining and machine learning have traditionally been viewed as distinct fields
with different focuses and objectives, the boundaries between them have become increasingly
blurred in recent years. As a result, it can be challenging to distinguish between these two
areas, and they are often used interchangeably or in conjunction with each other in practice.
Here are some reasons why:

1. Convergence of Techniques: Many techniques and algorithms originally developed
in one field are now widely used in the other. For example, machine learning algorithms
such as decision trees, neural networks, and support vector machines are commonly
used in data mining applications. Similarly, data mining techniques such as clustering
and association rule mining are used in various machine learning tasks.

Lecture 1: UNSW, Sydney 1-6

2. Integration of Tools and Platforms: Modern data analysis tools and platforms
often integrate both data mining and machine learning capabilities. For example, pop-
ular tools like Python’s scikit-learn library and R’s caret package provide a wide range
of algorithms for both data mining and machine learning tasks. Similarly, cloud-based
platforms such as Google Cloud Platform and Microsoft Azure offer integrated services
for data analysis, including both data mining and machine learning functionalities.

3. Interdisciplinary Nature: Both data mining and machine learning draw from a wide
range of disciplines, including statistics, computer science, mathematics, and domain-
specific areas such as biology, finance, and healthcare. As a result, researchers and
practitioners in both fields often collaborate and leverage techniques from each other’s
domains to solve complex problems.

4. Common Objectives: Despite their historical differences, data mining and machine
learning share common objectives, such as extracting useful insights from data, build-
ing predictive models, and making data-driven decisions. As a result, the distinctions
between these areas have become less pronounced, and they are often viewed as com-
plementary approaches to data analysis rather than separate disciplines.

While there may still be some conceptual distinctions between data mining and machine
learning, these boundaries are becoming increasingly fluid as both fields continue to evolve
and converge. In practice, researchers and practitioners often draw on techniques and
methodologies from both areas to address real-world data analysis challenges effectively.

Lecture 1: UNSW, Sydney 1-7

1.2 Gradient descent

Gradient descent is a popular optimization algorithm used to minimize a function by itera-
tively moving in the direction of steepest descent. It is widely employed in machine learning
for training models and in various optimization problems. In this section, we present the
basic formulation of gradient descent.

Formulation

Suppose we have a function C : Rp → R that we want to minimize, where θ = (θ1, . . . , θp) is
a vector of parameters. That is, our goal is solve the optimization,

minimize
θ

C(θ).

The gradient descent algorithm starts with an initial guess θ(0) and updates the parameters
iteratively according to the rule:

θ(n+1) = θ(n) − α∇C(θ(n))

where α is the learning rate and ∇C(θ(n)) is the gradient of the function C evaluated at θ(n).
The learning rate determines the step size of each iteration. Here, the gradient ∇C(θ) at θ
is defined as a vector of partial derivatives given by

∇C(θ) =
[
∂f(θ)
∂θ1

, · · · , ∂C(θ)
∂θp

]⊤
.

Intuitively, ∂C(θ)
∂θi

denotes the rate of change in the function value in the direction of θi at θ.

Algorithm

The gradient descent algorithm can be summarized as follows:

1. Initialize the parameters θ(0).

2. Repeat until convergence or a maximum number of iterations:

(a) Compute the gradient ∇C(θ(n)).

(b) Update the parameters: θ(n+1) = θ(n) − α∇C(θ(n)).

3. Return the final θ.

Lecture 1: UNSW, Sydney 1-8

Convergence

The convergence of gradient descent to the optimal minimum point θ∗ depends on various
factors, including the choice of the learning rate, the properties of the objective function C,
and the initial point θ(0). In general, if the learning rate is too large, the algorithm may
overshoot the minimum or oscillate around it. On the other hand, if the learning rate is too
small, the convergence may be slow.

Example

Consider the following 2-dimensional Rosenbrock function:

C(θ) = (1− θ1)
2 + 100(θ2 − θ21)

2. (1.1)

This function has unique minimum at θ∗ = (1, 1). We applied gradient descent on this
function. Figure 1.1 illustrates how the learning rate effects the convergence. Python
code for generating these figures can be found here.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

2

Optimal point

Initial point (0)

= 0.005
= 0.0025

(a)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

2

Optimal point

Initial point (0)

= 0.005
= 0.0025

(b)

Figure 1.1: Attempting minimization of a Rosenbrock function via basic gradient descent for two
values of α with 105 iterations and θ(0) = (0.2,−0.2). (a) Fixed learning rate: α(t) = α. (b)
Exponentially decaying learning rate: α(t) = α 0.99t.

https://github.com/yoninazarathy/MathematicalEngineeringDeepLearning/blob/master/Python/GD-with-timde-dependent-alpha.py

Lecture 1: UNSW, Sydney 1-9

Example

Figure shows examples of convex and non-convex functions. For convex functions,
we can often guarantee converges of gradient descent to a minimum point for an
appropriate choice of learning rate, starting at any initial point. Such a convergence
cannot be guaranteed for non-convex function. Note that in deep learning, we mostly
deal with minimization of non-convex functions.

(a) (b)

Figure 1.2: Two dimensional smooth functions. (a) The function C(θ) = θ21 + θ22 is convex with a
unique global minimum. (b) A well-known function called the peaks function is an example non-
convex function with several local minima, local maxima, and saddle points. Around each local
minimum, the function is locally convex. On the figure, two saddle points are marked with red
dots.

Variants

Several variants of gradient descent exist, including stochastic gradient descent (SGD), mini-
batch gradient descent, and momentum-based methods such as Adam optimizer and Nesterov
momentum methods. These variants introduce modifications to the basic gradient descent
algorithm to improve convergence speed or handle large datasets efficiently. For complete
details, read Chapter 4 of the book Mathematical Engineering of Deep Learning.

https://deeplearningmath.org/

Lecture 1: UNSW, Sydney 1-10

1.3 Linear regression

Linear regression is a fundamental statistical method used to model the relationship between
a dependent variable and one or more independent variables. It is widely used in various
fields for prediction, inference, and understanding the relationship between variables. In this
section, we present the basic formulation of linear regression.

Formulation for Simple Case

We first focus on a simple case where independent variable has only one feature. Consider
a dataset {(xi, yi)}ni=1, where xi represents the independent variable and yi represents the
dependent variable. Linear regression seeks to find a linear relationship between x and y of
the form:

yi = β0 + β1xi + ϵi,

where β0 and β1 are the intercept and slope parameters, respectively, and ϵi is the error term
representing the deviation of the observed data points from the regression line.

Least Squares Estimation: The most common method for estimating the parameters β0

and β1 in linear regression is the least squares method. It seeks to minimize the sum of
squared residuals (differences between the observed and predicted values). In particular,
with β = (β0, β1), let

C(β) =
1

n

n∑

i=1

(yi − (β0 + β1xi))
2,

which is the mean squared error. Then, in linear regression, we aim to solve,

minimize
β

C(β).

A solution to the above problem, denoted as β̂0 and β̂1, is the least squares estimates of β0

and β1. In this simple case, we can obtain the least squares estimates by solving the normal
equations:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

where x̄ and ȳ are the sample means of the independent and dependent variables, respectively.

Lecture 1: UNSW, Sydney 1-11

Example

We consider Boston housing dataset which is originally published in [1], has 506 ob-
servation where each observation is associated with a suburb or town in the Boston
Massachusetts area. Figure 1.3 shows modelling of median house prices as a function
of average number of rooms per dwelling. Refer to Section 2.1 of Chapter 2 in the
book Mathematical Engineering of Deep Learning.

0

10

20

30

40

50

4 5 6 7 8 9
Average number of rooms per dwelling (rm)

H
ou

se
 p

ric
es

 in
 $

10
00

 (
m

ed
v)

Figure 1.3: Example of simple linear model. Median house prices per locality (medv) as a
function of average number of rooms per dwelling (rm) is described via a simple linear (affine)
relationship.

Formulation for General Case

We now focus on case case where independent variable is a vector with p features. Consider
a dataset {(xi, yi)}ni=1, where xi = (xi,1, . . . , xi,p) ∈ Rp represents the independent variable
and yi represents the corresponding dependent variable. Linear regression seeks to find a
linear relationship between independent variable and dependent variable of the form:

yi = β0 + β1xi,1 + · · ·+ βpxi,p + ϵi, i = 1, 2, . . . , n, (1.2)

where θ = β = (β0, β1, . . . , βp) is the vector of unknown parameters, with β0 denoting the
intercept, and ϵi is the error term representing the deviation of the observed data points
from the regression line.

https://deeplearningmath.org/

Lecture 1: UNSW, Sydney 1-12

It is often easier to represent the above linear relationship using matrices and vectors. In
particular, let y = (y1, . . . , yn), ϵ = (ϵ1, . . . , ϵn), and

X =




1 x⊤
1

1 x⊤
2

...
...

1 x⊤
n


 =




1 x1,1 . . . , x1,p

1 x2,1 . . . , x2,p
...

...
...

1 xn,1 . . . , xn,p


 ,

which is an n× (p+ 1) matrix. Then, the linear model (1.2) can be written as

y = Xβ + ϵ,

Least Squares Estimation: Again, the most common method for estimating the parameter
evctor β in linear regression is the least squares method. In this general setting, let

C(β) =
1

n

n∑

i=1

(yi − (β0 + β1xi))
2,

which is the mean squared error. Then, in linear regression, we aim to solve,

minimize
β

C(β).

A solution to the above problem, denoted as β̂, is the least squares estimates of β.

Remark

Unlike the simple case with scalar independent variable, for the general case with
vector independent variable, there is no unique solution for β̂ except when X⊤X is
invertible. In that case,

β̂ = (X⊤X)−1(X⊤y).

When weX⊤X is not invertible, we replace (X⊤X)−1 with the pseudo-inverse ofX⊤X.

Model Evaluation

After obtaining the least squares estimates, it is essential to evaluate the goodness of fit
of the linear regression model. Common metrics for evaluation include the coefficient of
determination R2 (defined later in the lecture), which measures the proportion of variance
explained by the model, and the standard error of the regression, which measures the average
deviation of the observed values from the regression line.

Lecture 1: UNSW, Sydney 1-13

Extensions

Linear regression can be extended to handle more complex relationships by including higher-
order terms or interactions between variables. Additionally, various techniques exist to deal
with issues such as multicollinearity, heteroscedasticity, and outliers.

Example

Re-condisder the Boston housing price dataset. This time assume that the indepen-
dent variable xi is lower status of the population in %. As shown in Figure 1.4, the
relationship between xi and the median housing price yi is linear. However, we get a
better fit by assume

yi = β0 + β1xi + β2x
2
i + ϵi, i = 1, . . . , n. (1.3)

Again, refer to Section 2.1 of Chapter 2 in the book Mathematical Engineering of Deep
Learning.

0

10

20

30

40

50

10 20 30
Lower status of the population in % (lstat)

H
ou

se
 p

ric
es

 in
 $

10
00

 (
m

ed
v)

Figure 1.4: Example of an extended simple linear model. House prices as a function of lower
status of the population in % (lstat) is not described well with a linear relationship (red),
but by introducing an additional quadratic engineered feature it is described well via a three
parameter linear model (1.3) resulting in a quadratic fit (blue).

https://deeplearningmath.org/
https://deeplearningmath.org/

Lecture 1: UNSW, Sydney 1-14

1.4 Correlation coefficient and R2 Score

The correlation coefficient and R2 score are important measures used to quantify the strength
and direction of the relationship between two variables in statistics. In this section, we
present the definitions and interpretations of these measures.

Correlation Coefficient

The correlation coefficient, also known as sample Pearson correlation coefficient, denoted
as r, measures the strength and direction of a linear relationship between two variables. For
a sample of n observations (xi, yi), the correlation coefficient is given by:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ and ȳ are the sample means of the two variables x and y, respectively. The correlation
coefficient r ranges from -1 to 1, where:

• r = 1 indicates a perfect positive linear relationship.

• r = −1 indicates a perfect negative linear relationship.

• r = 0 indicates no linear relationship.

Further information about interpreting r is given below:

• Exactly –1. A perfect downhill (negative) linear relationship

• –0.70. A strong downhill (negative) linear relationship

• –0.50. A moderate downhill (negative) relationship

• –0.30. A weak downhill (negative) linear relationship

• 0.00. No linear relationship

• +0.30. A weak uphill (positive) linear relationship

• +0.50. A moderate uphill (positive) relationship

• +0.70. A strong uphill (positive) linear relationship

• Exactly +1. A perfect uphill (positive) linear relationship

Lecture 1: UNSW, Sydney 1-15

R2 Score

The coefficient of determination, denoted as R2, is a measure of how well the independent
variable(s) explain the variability of the dependent variable. It is defined as the proportion of
the variance in the dependent variable that is predictable from the independent variable(s).

For a regression model with predicted values ŷi and observed values yi, the R
2 score is given

by:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

where ȳ is the mean of the observed values yi. The R2 score ranges from 0 to 1, where:

• R2 = 1 indicates that the regression model perfectly predicts the dependent variable.

• R2 = 0 indicates that the regression model does not explain any of the variability of
the dependent variable.

Interpretation

Both the correlation coefficient and R2 score provide insights into the relationship between
variables. While the correlation coefficient measures the strength and direction of a linear
relationship, the R2 score quantifies the proportion of variance explained by a regression
model.

1.5 Logistic regression

Logistic regression is a statistical method used for binary classification tasks. It models
the probability of a binary outcome (such as success/failure or 0/1) given one or more
independent variables. In this section, we present the basic formulation and interpretation
of logistic regression.

Formulation

Let xi = (xi,1, . . . , xi,p) be a vector of independent variables in the i-th sample and yi be
the corresponding binary dependent variable. The logistic regression model assumes a linear
relationship between the independent variables and the log odds of the binary outcome:

log

(
pi

1− pi

)
= β0 + β1xi,1 + β2xi,2 + . . .+ βpxi,p, i = 1, . . . , n.

Lecture 1: UNSW, Sydney 1-16

where pi is the probability of the positive outcome, and β0, β1, . . . , βp are the coefficients to
be estimated.

In other words, for each vector of independent variable xi = (x1,1, . . . , xi,p), the corresponding
depedent variable yi takes values 0 or 1 with

P(yi = 1) = pi, and P(yi = 0) = (1− pi).

Logistic Function: The logistic function, also known as the sigmoid function, is used to
transform the linear combination of independent variables into a probability between 0 and 1:

pi =
1

1 + exp(−(β0 + β1xi,1 + β2xi,2 + . . .+ βpxi,p))

where exp is the exponential function.

Interpretation The coefficients β1, β2, . . . , βp represent the change in the log odds of the
binary outcome for a one-unit change in the corresponding independent variable, holding all
other variables constant.

Model Training

To estimate the coefficients of the logistic regression model, various optimization techniques
such as maximum likelihood estimation or gradient descent are used. The goal is to find the
coefficients that maximize the likelihood of the observed data given the model.

Model Evaluation

Once the logistic regression model is trained, it is evaluated using metrics such as accuracy,
precision, recall, F1 score, and the receiver operating characteristic (ROC) curve. These
metrics assess the performance of the model in predicting the binary outcome.

Extensions

Logistic regression can be extended to handle multi-class classification tasks using techniques
such as one-vs-rest or multinomial logistic regression. Additionally, regularization techniques
such as L1 and L2 regularization can be applied to prevent overfitting; more details later.

Remark

For complete details on the logistic regression, refer to Section 3.1 in Chapter 3 of the
book Mathematical Engineering of Deep Learning.

https://deeplearningmath.org/

Lecture 1: UNSW, Sydney 1-17

Logistic Regression as a Shallow Neural Network

Let us first represent the logistic regression model as

ŷ = p = σ




z︷ ︸︸ ︷
b+w⊤x




︸ ︷︷ ︸
a

, (1.4)

with b = β0, w = (w1, . . . , wp) = (β1, . . . , βp), and σ denoting the sigmoid function, which
we refer to as a scalar activation function. In this form, logistic regression model is a neural
network; see Figure 1.5.

x1

x2

...

xp







∑

b

w1

w2

wp

ŷ = σ(b+ w>x)

z = b+
∑p

i=1wixi σ(z) =
1

1 + e−z
∈ (0, 1)

Input
x

Weight, Bias
(w, b)

Affine
Transformation

z

Activation
σ(z)

Output
ŷ

Figure 1.5: Logistic regression represented with neural network terminology as a shallow neural
network. The gray box represents an artificial neuron composed of an affine transformation to
create z and an activation σ(z).

Remark

A trivial alternative activation function to the logistic function is the identity activation
function σ(z) = z. With this identity activation function, the model in (1.4) is clearly
just the linear model ŷ = b+ w⊤x, which we studied in linear regression.

Lecture 1: UNSW, Sydney 1-18

1.6 Measurements of error

Measurement errors play a crucial role in both regression and classification tasks. In this
section, we provide definitions of various types of measurement errors and commonly used
loss functions for evaluating the performance of models.

Regression

In regression tasks, the goal is to predict continuous outcomes. As usual, let yi’s are the true
response variables and ŷi’s are the corresponding predictions. Then the following are some
commonly used loss functions.

• Mean Squared Error (MSE): Measures the average squared difference between the
predicted and actual values:

MSE =
1

n

n∑

i=1

(yi − ŷi)
2.

• Mean Absolute Error (MAE): Measures the average absolute difference between
the predicted and actual values:

MAE =
1

n

n∑

i=1

|yi − ŷi|.

• Huber Loss: A combination of MSE and MAE that is less sensitive to outliers:

Huber Loss =
1

n

n∑

i=1

ℓ(yi, ŷi),

where

ℓ(yi, ŷi) =

{
1
2
(yi − ŷi)

2 if |yi − ŷi| ≤ δ

δ(|yi − ŷi| − 1
2
δ) otherwise

.

• Log-Cosh Loss: Approximates the logarithm of the hyperbolic cosine of the predic-
tion error.

Log-Cosh Loss =
1

n

n∑

i=1

log(cosh(yi − ŷi))

• Quantile Loss: Generalization of MAE that allows for different penalties for overes-
timation and underestimation.

Quantile Lossτ =
1

n

n∑

i=1

ℓ(yi, ŷi),

Lecture 1: UNSW, Sydney 1-19

where

ℓ(yi, ŷi) =

{
τ(yi − ŷi) if yi − ŷi ≥ 0

(τ − 1)(yi − ŷi) otherwise
.

Remark

To see the relationship between MSE, MAE and Huber loss, refer to Figure 1.6.

Figure 1.6: Loss function and error distribution alternatives. (a) Squared, absolute, and
Huber loss functions.

Classification

In classification tasks, the goal is to predict categorical outcomes. In classification, for each
sample i, we have a true label yi and a vector of prediction probabilities p̂i = (p̂i,1, . . . , p̂i,C)
with C denoting that number of classes and p̂i,c = P(yi = c). For binary classification, we
take p̂i = (p̂i, 1 − p̂i) with p̂i = P(yi = 1). The following are some commonly used loss
functions.

• Log Loss (Cross-Entropy Loss): Applies to binary classification where the response
variables yi takes values in {0, 1}. Measures the difference between the predicted and
actual class probabilities.

Log Loss = − 1

n

n∑

i=1

(yi log(p̂i) + (1− yi) log(1− p̂i)) ,

with p̂i denoting the predictions (probabilities).

Lecture 1: UNSW, Sydney 1-20

• Focal Loss: A modification of cross-entropy loss that focuses on hard-to-classify ex-
amples.

Focal Lossγ = − 1

n

n∑

i=1

(yi(1− p̂i)
γ log(p̂i) + (1− yi)p̂

γ
i log(1− p̂i)) .

• Exponential Loss: Penalizes misclassifications exponentially.

Exponential Loss =
1

n

n∑

i=1

e−yip̂i

• Hinge Loss: Used in binary classification tasks with support vector machines (SVMs).

Hinge Loss =
1

n

n∑

i=1

max(0, 1− yip̂i)

• KL Divergence (Relative Entropy): Can be applied for multiclass classification.
Measures the difference between the predicted and actual probability distributions.

KL Divergence =
1

n

n∑

i=1

C∑

c=1

I(yi = c) log

(
I(yi = c)

p̂i,c

)
,

with the convention that 0 log 0 = 0, where p̂i,c is the predicted probability of i-th
sample is of class c.

These loss functions provide different ways to measure the discrepancy between the predicted
and actual outcomes in both regression and classification tasks.

1.7 Bias and variance

Bias and variance are two fundamental concepts in machine learning and statistics that de-
scribe the behavior of models in terms of their prediction errors. In this section, we discuss
bias, variance, and the bias-variance tradeoff.

Bias: Bias refers to the error introduced by approximating a real-world problem with a
simplified model. A model with high bias makes strong assumptions about the underlying
data and may fail to capture complex patterns. Common examples of high bias models
include linear regression with insufficient features and decision trees with shallow depths.

Lecture 1: UNSW, Sydney 1-21

Mathematically, bias is defined as the difference between the expected prediction of the
model ŷ = f̂(x) and the true value y = f(x) for an unseen data point (x, y):

Bias(ŷ) = E[ŷ]− y

where E[ŷ] is the expected value of the predicted value.

Variance: Variance measures the variability of the model’s predictions for a given data
point. A model with high variance is sensitive to small fluctuations in the training data and
may overfit by capturing noise instead of true patterns. Examples of high variance models
include decision trees with deep depths and complex neural networks.

Mathematically, variance is defined as the expected squared difference between the predicted
value of the model and the expected prediction:

Var(ŷ) = E[(ŷ − E[ŷ])2] = E[ŷ2]− (E[ŷ])2

Bias-Variance Tradeoff: The bias-variance tradeoff refers to the balance between bias and
variance when designing machine learning models. In general, increasing the complexity of
a model reduces bias but increases variance, and vice versa. The goal is to find the optimal
balance that minimizes the overall prediction error.

• High Bias, Low Variance: Simple models with high bias and low variance tend to
underfit the data by oversimplifying the underlying patterns.

• Low Bias, High Variance: Complex models with low bias and high variance tend
to overfit the data by capturing noise instead of true patterns.

• Optimal Tradeoff: The optimal tradeoff between bias and variance depends on the
specific problem and the amount of available data. Techniques such as regularization
and cross-validation can help find the optimal balance.

Understanding bias and variance is essential for designing effective machine learning models
that generalize well to unseen data.

Generally, as model complexity increases, expected training performance improves (de-
creases) since complex structured models can explain the training data better. At high
extremes this is overfitting. Similarly an opposite phenomenon is that models with low
complexity are not able to describe the data well. The tradeoff between these two regimes
is obtained at the minimum of the expected generalized performance on an unseen data,
marked by the vertical dashed line in Figure 1.7.

Lecture 1: UNSW, Sydney 1-22

Underfitting Overfitting

Optimal Model

Ẽunseen

Ẽtrain

Model Complexity

Er
ro

r

Figure 1.7: Typical behaviour of expected generalization performance on unseen data (red
curve) and expected training performance on training data (blue) as a function of model
complexity

Example

As one simple illustrative example capturing the tradeoffs of model complexity, let us
consider linear models with polynomial features applied to synthetic univariate (p = 1)
data. The model

y = β0 + β1x+ β2x
2 + . . .+ βkx

k + ϵ, (1.5)

where k is the order of the polynomial. Hence, the model with k = 0 is the constant
model, the model with k = 1 is the simple linear model, the model with k = 2 is the
quadratic model, and so on. In this framework, model complexity corresponds to the
degree of the polynomial model is illustrated in Figure 1.8.

1.8 Cross validation

Cross-validation is a widely used technique in machine learning for assessing the generalized
performance of a predictive model. It helps to estimate how well the model will generalize to
unseen data. In this section, we discuss the concept of cross-validation and various commonly
used cross-validation techniques.

The main idea behind cross-validation is to partition the available data into multiple subsets,
called folds. The model is trained on a subset of the data and evaluated on the remaining
data. This process is repeated multiple times, with different subsets used for training and
evaluation each time. The performance metrics obtained from each iteration are then aver-
aged to obtain a more reliable estimate of the model’s performance.

Lecture 1: UNSW, Sydney 1-23

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y
Polynomial fit with k=0

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y

Polynomial fit with k=1

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y

Polynomial fit with k=3

−3

−2

−1

0

1

0.00 0.25 0.50 0.75 1.00
x

y
Polynomial fit with k=9

(a)

E train

Eunseen

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9
Model (k)

M
ea

n
S

qu
ar

e
E

rr
or

(b)

Figure 1.8: Increasing model complexity illustrated via linear models with polynomial features
where k, the order of the polynomial, captures the complexity. (a) Fitting several models to a
single realization with n = 10 data-points. (b) The training performance in red and simulation
estimates of the generalization performance in black.

K-Fold Cross-Validation

K-fold cross-validation is one of the most commonly used cross-validation techniques. In
K-fold cross-validation, the given data is divided into K subsets of approximately equal size.
The model is trained K times, each time using K-1 folds for training and the remaining
fold for evaluation. The performance metrics obtained from each iteration are then aver-
aged to obtain the final performance estimate which provides an estimation of the expected
generalized performance; see Figure 1.9 for an illustration.

Leave-One-Out Cross-Validation (LOOCV)

Leave-One-Out Cross-Validation (LOOCV) is a special case of K-fold cross-validation where
K equals the number of data points in the dataset. In LOOCV, the model is trained K
times, each time using all but one data point for training and the remaining data point for
evaluation. This process is repeated for each data point in the dataset. LOOCV provides
an unbiased estimate of the model’s performance but can be computationally expensive,
especially for large datasets.

Lecture 1: UNSW, Sydney 1-24

... E
(1)
validationk = 1

Validation Data Training Data

... E
(2)
validationk = 2

.

.

.

... E
(K)
validationk = K

Training Data Validation Data

Figure 1.9: K-fold cross validation. For each k = 1, . . . ,K the data is split into training data
and validation data differently. This yields K estimates for performance and these estimates can
be averaged.

Stratified Cross-Validation

Stratified cross-validation is used when the dataset is imbalanced, i.e., the distribution of
classes is uneven. In stratified cross-validation, the data is divided into folds such that each
fold contains approximately the same proportion of samples from each class as the original
dataset. This ensures that the model is trained and evaluated on representative samples
from each class.

Nested Cross-Validation

Nested cross-validation is used for model selection and hyperparameter tuning. In nested
cross-validation, the data is divided into an outer loop and an inner loop. The outer loop is
used for model evaluation, while the inner loop is used for hyperparameter tuning. Nested
cross-validation provides an unbiased estimate of the model’s performance and helps to
prevent overfitting during model selection.

Conclusion

Cross-validation is a powerful technique for estimating the performance of predictive models
and selecting the best model for a given task. By using cross-validation, researchers and
practitioners can ensure that their models generalize well to unseen data and make reliable
predictions in real-world scenarios.

Lecture 1: UNSW, Sydney 1-25

1.9 Confusion matrix

A confusion matrix is a performance measurement tool used in classification tasks to evaluate
the performance of a predictive model. It provides a summary of the predicted and actual
class labels for a given dataset. In this section, we discuss the components of a confusion
matrix and how it is used to assess the performance of a classification model.

Components of a Confusion Matrix

A confusion matrix is typically represented as a square matrix with rows and columns cor-
responding to the actual and predicted class labels, respectively. To define the components
of this matrix, suppose for a classifier is constructed via a decision rule based on a threshold
τ , with the predicted output being,

Ŷi =

{
1, if p̂i ≥ τ,

0, if p̂i < τ,
(1.6)

Then the main components of a confusion matrix are as follows:

• True Positives (TP): The number of instances that belong to the positive class (ac-
tual positive) and are correctly predicted as positive. That is, the number of instances
i where Ŷi = 1 and yi = 1.

• False Positives (FP): The number of instances that belong to the negative class
(actual negative) but are incorrectly predicted as positive. That is, the number of
instances i where Ŷi = 1 for yi = 0.

• True Negatives (TN): The number of instances that belong to the negative class
(actual negative) and are correctly predicted as negative. That is, the number of
instances i where Ŷi = 0 and yi = 0.

• False Negatives (FN): The number of instances that belong to the positive class
(actual positive) but are incorrectly predicted as negative. That is, the number of
instances i where Ŷi = 0 for yi = 1.

Interpretation

The confusion matrix provides a detailed breakdown of the model’s performance in terms of
true positives, false positives, true negatives, and false negatives. It allows us to calculate
various performance metrics, such as accuracy, precision, recall, and F1 score, which provide
insights into different aspects of the model’s performance.

Lecture 1: UNSW, Sydney 1-26

Example

Consider a binary classification task where we are predicting whether an email is spam
(positive class) or not spam (negative class). A confusion matrix for this task might
look like the following: [

TN FP
FN TP

]
=

[
950 20
30 1000

]

In this example, there are 950 true negatives (non-spam emails correctly classified),
20 false positives (non-spam emails incorrectly classified as spam), 30 false negatives
(spam emails incorrectly classified as non-spam), and 1000 true positives (spam emails
correctly classified).

Conclusion

The confusion matrix is a valuable tool for evaluating the performance of classification models
and gaining insights into their strengths and weaknesses. By analyzing the components of
the confusion matrix, we can identify areas for improvement and make informed decisions
about model selection and optimization.

1.10 Receiver Operating Characteristics (ROC) curve

The Receiver Operating Characteristics (ROC) curve is a graphical tool widely used in binary
classification to assess the performance of a classifier across different decision thresholds.
Let’s explore the mathematical formulation and interpretation of the ROC curve in detail.

Mathematical Concept

The ROC curve is a plot of the true positive rate (TPR) (sensitivity) against the false positive
rate (FPR) (1 - specificity) for various decision thresholds τ . To define formally, recall the
binary classifier given in (1.6) and define,

TPR(τ) =
TP

TP + FN
, and FPR(τ) =

FP

TN + FP
.

Then, ROC is the curve of TPR(τ) vs FPR(τ)).

Lecture 1: UNSW, Sydney 1-27

Interpretation

The ROC curve provides a visual representation of a classifier’s trade-off between sensitivity
and specificity at different decision thresholds. A curve that hugs the upper left corner
indicates superior performance, as it achieves high sensitivity with low false positive rate.
Conversely, a curve closer to the diagonal line suggests poorer discrimination ability.

Example

Consider a logistic regression set-up with logistic function being

pi =
1

1 + exp(−(β0 + β1x1 + β2x2
1 + · · ·+ βkxk

i))
,

or, equivalently,

log

(
pi

1− pi

)
= β0 + β1x1 + β2x

2
1 + · · ·+ βkx

k
i

is a polynomial of degree k. Compare this with (1.5).
Figure 1.10 illustrates ROC for an example dataset. For more details on ROC and the
dataset used in the figure, refer to Section 2.2 in Chapter 2 of the book Mathematical
Engineering of Deep Learning.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

S
en

si
tiv

ity

Perfectly Separable
Univariate
Full model
Chance Line

Figure 1.10: Receiver operating characteristic (ROC) curves for the breast cancer data. One model
is a univariate model (k = 1), and the other is with k = 30. A chance line (guessing model) and
a perfectly separable line (ideal model) are also plotted. For each model, the ROC captures the
tradeoff between the sensitivity and the false positive rate (one minus specificity).

https://deeplearningmath.org/
https://deeplearningmath.org/

Lecture 1: UNSW, Sydney 1-28

Advantages

The ROC curve is advantageous as it provides a comprehensive visualization of a classifier’s
performance across different decision thresholds. It allows for easy comparison between
different classifiers and facilitates the selection of an appropriate operating point based on
the specific application requirements.

Area Under The Curve (AUC)

ROC curves allow us to asses the quality of models taking all possible threshold parameters
into account. A related measure that tries to quantify the quality of a curve into a single
number is the area under the curve(AUC) measure. For a classifier with an ROC curves that
achieves perfect sensitivity under any level of specificity this measure is at 1 and corresponds
to the perfectly separable green curve in Figure 1.10. However for classifiers that just choose
a random class, this measure is at 0.5 corresponding to the chance line, red line in Figure 1.10.
In the case of the breast cancer data we see that on the test set the AUC for the k = 1
model is 0.70 and for the k = 30 model it is at 0.92. This may give an indication that the
additional features in the richer model help obtain a better predictor.

Conclusion

The Receiver Operating Characteristics (ROC) curve is a valuable tool for evaluating the per-
formance of binary classifiers. Its mathematical foundation and interpretation offer insights
into the trade-off between sensitivity and specificity, aiding in informed decision-making in
classification tasks.

1.11 Regularisation

Regularization is a technique used in machine learning and statistics to prevent overfitting by
adding a penalty term to the loss function. It discourages overly complex models by penal-
izing large parameter values. In this section, we discuss three commonly used regularization
techniques: Lasso, Ridge, and ElasticNet.

A common way to keep model parameters at bay is to augment the optimization objective
minθ C(θ) with an additional regularization term Rλ(θ). The revised objective is then,

minimize
θ

C(θ) +Rλ(θ). (1.7)

The regularization term Rλ(θ) (also called penalty term) depends on a regularization pa-
rameter λ, which is often a scalar in the range [0,∞) but also sometimes a vector. This

Lecture 1: UNSW, Sydney 1-29

hyper-parameter allows us to optimize the bias and variance tradeoff.

Lasso (L1 Regularization)

Lasso, short for Least Absolute Shrinkage and Selection Operator, adds a penalty term
proportional to the absolute value of the coefficients to the loss function. Mathematically,
the Lasso regularization term is defined as:

Rλ(θ) = λ

p∑

j=1

|θj|.

where λ is the regularization parameter and βj are the model coefficients. Lasso encourages
sparsity in the model, leading to feature selection by shrinking some coefficients to zero.

Ridge (L2 Regularization)

Ridge regularization adds a penalty term proportional to the square of the coefficients to the
loss function. Mathematically, the Ridge regularization term is defined as:

Rλ(θ) = λ

p∑

j=1

θ2j .

Ridge regularization penalizes large coefficients while maintaining all features in the model.
It tends to shrink the coefficients towards zero without completely eliminating them.

ElasticNet Regularization

ElasticNet regularization combines Lasso and Ridge penalties by adding both L1 and L2
regularization terms to the loss function. The ElasticNet penalty is defined as a weighted
combination of the Lasso and Ridge penalties:

Rλ(θ) = λ1

p∑

j=1

|θj|+ λ2

p∑

j=1

θ2j .

where λ1 and λ2 are the regularization parameters controlling the strength of L1 and L2
regularization, respectively.

Choice of Regularization Parameter

The choice of the regularization parameter (λ for Lasso and Ridge, λ1 and λ2 for ElasticNet)
is crucial and is typically determined using techniques such as cross-validation or grid search.

Lecture 1: UNSW, Sydney 1-30

Conclusion

Regularization techniques such as Lasso, Ridge, and ElasticNet are powerful tools for pre-
venting overfitting and improving the generalization of machine learning models. By adding
penalty terms to the loss function, these techniques encourage simpler models and feature
selection, leading to better performance on unseen data.

1.12 One Hot Encoding

In deep learning, especially in tasks like natural language processing (NLP) and classification,
one-hot encoding is a common technique used to represent categorical variables numerically.
It involves converting categorical variables into binary vectors, where each vector has a length
equal to the number of categories and contains a single ’1’ value at the index corresponding
to the category, while all other elements are ’0’.

• Denote a categorical variable with C categories as c1, c2, . . . , cC .

• The one-hot encoding of this variable would result in binary vectors x1, x2, . . . , xC ,
where:

xi =

{
1 if i = j

0 otherwise

where j is the index of the category cj in the original categorical variable.

• Mathematically, we can represent one-hot encoding using the Kronecker delta function.
The Kronecker delta, denoted as δij, is defined as:

δij =

{
1 if i = j

0 otherwise

• Then, the ith element of the one-hot encoded vector xi can be expressed as:

xi = δij

This means that the one-hot encoding of the category ci results in a vector where the
ith element is ’1’ and all other elements are ’0’.

• In deep learning applications, one-hot encoding is commonly used as input repre-
sentations for categorical variables in neural networks, particularly in tasks such as
multi-class classification, where the output layer typically employs a softmax activa-
tion function. This encoding ensures that the neural network can effectively learn to
predict probabilities across multiple classes.

Lecture 1: UNSW, Sydney 1-31

• Despite its simplicity, one-hot encoding has some drawbacks, such as high dimensional-
ity when dealing with a large number of categories and the inability to capture ordinal
relationships between categories. However, it remains a fundamental technique in deep
learning for handling categorical variables efficiently.

References

[1] D. Harrison Jr and D. L. Rubinfeld. Hedonic Housing Prices and the Demand for Clean
Air. Journal of Environmental Economics and Management, 1978.

	Data Mining vs Machine Learning
	Gradient descent
	Linear regression
	Correlation coefficient and R2 Score
	Logistic regression
	Measurements of error
	Bias and variance
	Cross validation
	Confusion matrix
	Receiver Operating Characteristics (ROC) curve
	Regularisation
	One Hot Encoding

