
Data Mining and Machine Learning

Lecture 2: Introduction to Neural Networks
Dr Sarat Moka UNSW, Sydney

Key Topics

• Tasks and architectures

• Neuron: Motivation for neural networks

• General feedforward neural networks

• Activation functions and layers

• Backpropagation algorithm

• Number of hidden layers

Books:

(A) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd Ed.)
by Aurélien Géron (2019).

(B) Mathematical Engineering of Deep Learning book by Liquet, Moka, and Nazarathy
(2024).

2-1

https://deeplearningmath.org/

Lecture 2: UNSW, Sydney 2-2

2.1 Tasks and Architectures

To get a feel for the models and methods covered, we now present an overview of the key
tasks and architectures. Figure 2.1 presents schematics of different types of neural networks.
We now briefly discuss about some of these networks, namely, feedforward fully connected
neural network, convolutional neural network, recurrent neural network, generative models,
and deep reinforcement learning.

Feedforward Fully Connected Neural Network

• The most basic deep neural network is the feedforward fully connected neural network;
see Figure 2.1 (a).

• Simple special cases of this network are the linear model and logistic regression (sig-
moid), both covered in Week 1.

• Mathematically, feedforward fully connected neural networks are simply combinations
of affine (linear) transformations and non-linear activation functions, similar to logistic
regression model.

• This enhancement gives the model, fθ(·), an incredible ability to express complex
relationships, y = fθ(x), while supporting an algorithmically tractable way of finding
θ (fitting or training).

• Classically these models are also called multi-layer perceptron since they are descen-
dants of the first ever neural network model, the perceptron, developed by Frank
Rosenblatt in the late 1950’s.

• This architecture is useful for tasks such as classification, regression, or feature extrac-
tion.

• Components of these networks, called fully connected layers, can also be components of
more complex architectures such as convolutional networks, transformer models, and
others.

• Understanding training of these feedforward fully connected architectures, where gra-
dients are computed via the famous backpropagation algorithm is key to understanding
the essence of deep learning.

Convolutional Neural Networks

• The VGG19 model is one example of a convolutional neural network. This class of
models is illustrated in Figure 2.1 (c).

Lecture 2: UNSW, Sydney 2-3

Input layer Layer 1 Layer 2 Layer 3

Output layer

(a)

Encoder Decoder

(b)

Bird

(c)

h〈t〉

y〈t〉

x〈t〉

- -

Recursive graph

h〈t−1〉

y〈t−1〉

x〈t−1〉

h〈t〉

y〈t〉

x〈t〉

h〈t+1〉

y〈t+1〉

x〈t+1〉

Unfolded graph

- -

(d)

Transformer
Encoder

We love deep learning <stop>

z?

Transformer
Decoder

<start>

<start> nous

Transformer
Decoder

<start> nous

<start> nous aimons

z? z?

(e)

Encoder

Decoder

(f)

Fake
Images

Real
Images

Generator Network

D
iscrim

inator
N

etwork

Fake/Real

Random
Noise

(g)

Agent

Environment

ActionRewardObservation

(h)

Figure 2.1: Illustrations of some common deep learning architectures and paradigms: (a)
Feedforward fully connected neural networks. (b) Autoencoders with shallow versions. (c)
Convolutional neural networks. (d) Recurrent neural networks. (e) Transformer architec-
tures with an encoder and repeated application of a decoder. (f) Diffusion models for image
generation. (g) Generative adversarial networks. (h) Reinforcement learning.

Lecture 2: UNSW, Sydney 2-4

• Convolutional models are primarily used for image analysis and it is fair to say that
their recent success has shuffled the cards in the broad field of image processing.

• Beyond images, these models can be adapted for other domains such as radiology data
or audio.

• In the context of images, there are multiple related tasks including classification, se-
mantic segmentation, and localization, and all of this can be handled via convolutional
neural networks.

• Convolutional neural networks can be viewed as adaptations of fully connected net-
works, where the action of each layer is not based on the full connections between
activations but rather on smaller trainable convolutions.

• Such a setup significantly reduces the number of parameters, enables deeper architec-
tures, and most importantly capitalizes on spatial relationships present in the input.

• This results in training that is much more efficient and the model is more efficient in
production as well.

Recurrent Neural Networks, LSTMs, and GRUs

• Figure 2.1 (d) illustrates a recurrent neural network where on the left side of (d) we
see the basic architectural components and on the right side we see what is called an
unfolded representation of the network, illustrating its recursive operation.

• While key advances during 2010–2015 were in the convolutional domain focusing on
images, the second half of that decade witnessed deep learning becoming an integral
part of natural language processing (NLP).

• By now, automatic translation engines, language generation models, and other solu-
tions for tasks associated with text almost always involve deep neural networks or are
entirely based on deep learning models. The use of recurrent neural networks is the
most rudimentary modeling paradigm for such purposes.

• There are multiple variations of recurrent neural networks where the most basic one is
illustrated in Figure 2.1 (d).

• However, the internal structure can vary and some popular and powerful variations
include long short term memory (LSTM) models and gated recurrent unit (GRU)
models.

• In addition to NLP, there are many other domains where such models for sequence data
is a natural choice including genomic sequencing, multivariable time series, audio, and
even video.

Lecture 2: UNSW, Sydney 2-5

Generative Models

• A generative model in deep learning refers to a type of model that learns to generate
new data points that resemble a given dataset.

• There are mainly two popular deep learning generative models: diffusion models and
generative adversarial network (GAN).

• In Figure 2.1 (f) we see a schematic of a diffusion model which here simply appears
as a process of either adding noise to an image in an encoder or alternatvily removing
noise from an image with a decoder.

• The overarching idea of a diffusion model is to learn not just how to add noise, but
also how to create an image out of noise. With this, a trained decoder can generate
realistic looking images that are actually random.

• Diffusion models and their generalizations are probabilistic in nature.

• A generative adversarial network (GAN) (GAN) architecture is illustrated in Fig-
ure 2.1 (g).

• Like diffusion models, GANs are very useful for creating random data that is realistic
in nature.

• The rise and popularity of GANs predated that of diffusion models and today GANs
and diffusion models compete for the state of the art in artificial data generation.
GANs and diffusion models differ in their architecture and analysis.

• While diffusion models are probabilistic, the analysis and study of GANs is close to
the field of game theory.

• The key idea of a GAN is to simultaneously train two deep neural networks, a genera-
tor and a discriminator. The former generates fake data, while the latter attempts to
determine if the data is fake or real. As the training of both of these networks pro-
gresses, the generator is ultimately able to fool the discriminator and as a consequence,
it also creates “real looking” data.

Deep Reinforcement Learning

• In Figure 2.1 (h) we illustrate the paradigm of reinforcement learning.

• Here the basic setup is that a system, or environment, is controlled by an agent.

Lecture 2: UNSW, Sydney 2-6

• For example, one may think of the environment as a home, and the agent as a cleaning
robot traversing and cleaning the home. As time progresses, the agent makes decisions
in the form of actions, for example move right 5 cm, and these are interfaced with
the environment. The agent in turn receives reward from the environment as well as
observations, where the reward is a mechanism that helps to drive towards better goals,
for example “cleaning in a quick and energy efficient manner”, and the observations
can include sensory input.

• In general, the goal of reinforcement learning is to develop meaningful ways for the
agent to choose actions.

• One of the great leaps of AI during the second decade of this century is in the game of
Go. This strategic board game was long considered much more difficult “to program”
in comparison to other games such as Chess1.

• Yet in 2015 a team from DeepMind through a series of advances and competitions
designed a system called AlphaGo which beat the world’s best Go players.

• This highly publicized achievement made the dream of artificial intelligence a bit more
concrete by showing the ability of neural networks to solve complicated tasks. The key
ideas of this achievement are from the field of reinforcement learning.

2.2 Neuron: Motivation for neural networks

• Brains are composed of (biological) neurons that are interconnected in unstructured
ways; see Figure 2.2 where display (a) illustrates a single biological neuron and display
(c) illustrates an interconnected network of biological neurons. A human brain has an
estimated 85 billion neurons.

• A single human action such as movement of an arm may induce the firing of around
80 million such neurons, whereas the identification of a visual object may use the bulk
of the estimated 150 million neurons that are in the visual cortex.

• Deep neural network models are neither brains nor attempts to create artificial brains.
Nevertheless, the development of these models is highly motivated by the biological
structure of the brain.

• The basic building block of a deep neural network model is the (artificial) neuron
abstracting the synapse connection between neurons via a single number called an
activation value.

1Computers have shown their superiority in the game of Chess since the mid 1990’s with a notable victory
of the Deep Blue Chess playing expert system defeating the champion Garry Kasparov over a six-game match
in 1996.

Lecture 2: UNSW, Sydney 2-7

• See display (b) of Figure 2.2 for a single (artificial) neuron and display (d) which
presents a combination of multiple neurons as part of a feedforward (artificial) neural
network.

• Pioneering and landmark work in AI research was inspired by neuroscience since brains
are essentially the only complete proof we have for the existence of what we call “general
intelligence”.

• Further, many tasks of deep learning models involve the mimicking of human level
(or animal level) tasks such as understanding images or conversational tasks. Thus for
example one of the most well-known benchmarks in the world of artificial intelligence is
the Turing test, originally named the imitation game when introduced by Alan Turing
in 1950.

• It is essentially a test to see if a computer can engage in long conversation with a
human, without another observing human distinguishing between the computer and
the human.

Remark

An interesting aspect of biological neurons is their ability to generate complex electrical
signals known as action potentials or spikes. These spikes play a crucial role in neural
communication and information processing in the brain. Unlike artificial neurons
in deep learning, which typically operate using continuous activation functions and
numerical computations, biological neurons exhibit discrete, nonlinear firing patterns
characterized by the generation and propagation of action potentials along their axons.

Lecture 2: UNSW, Sydney 2-8

(a)

Neuron

w1

w2

w3

w4

w5

(b)

(c)

x1

x2

x3

x4

ŷ

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output
Layer

(d)

Figure 2.2: Biological and artificial neurons and networks.2 (a) A single biological neuron.
(b) A neuron in an artificial neural network. (c) Connection of multiple biological neurons
in a brain. (d) An artificial neural network connecting multiple neurons in a feedforward
structured manner.

Lecture 2: UNSW, Sydney 2-9

2.3 General Feedforward Neural Networks

x1

x2

x3

x4

ŷ

Input
Layer

Hidden
Layer

Output
Layer

(a)

x1

x2

x3

x4

ŷ

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output
Layer

(b)

Figure 2.3: Fully connected feedforward neural networks. (a) A network with a single hidden
layer. (b) A deep neural network with multiple hidden layers.

• In the previsous section, we briefly illustrated feedforward fully connected neural net-
works. Such a model can also be called a fully connected network, a feedforward network,
or a dense network where each of these terms may also be augmented with the phrases
“deep”, “neural”, and “general”. Another name for such a model is a multi-layer
perceptron (MLP) or a multi-layer dense network.

• Schematic illustrations of this architecture are presented in Figure 2.3. In that figure,
each circle may be called a neuron or unit and each vertical set of neurons is a layer.

• The left most layer is called the input layer and it has the input features vector x.

• The right most or output layer contains the output neurons (just one in this example).

• The layers in the middle are called hidden layer, since the neurons in these layers
are neither inputs nor outputs. When using the network in production for prediction
(regression or classification), we do not directly observe what goes on in the hidden
layers, but rather observe network outputs resulting from inputs.

Lecture 2: UNSW, Sydney 2-10

A Model Based on Function Composition

• The goal of a feedforward network is to approximate some function f ∗ : Rp −→ Rq.

• A feedforward network model defines a mapping fθ : Rp −→ Rq and learns the value
of the parameters θ that ideally result in

fθ(x) ≈ f ∗(x).

• The function fθ is recursively composed via a chain of functions:

fθ(x) = f
[L]

θ[L](f
[L−1]

θ[L−1](. . . (f
[1]

θ[1]
(x)) . . .)), (2.1)

where f
[ℓ]

θ[ℓ]
: RNℓ−1 −→ RNℓ is associated with the ℓ-th layer which depends on param-

eters θ[ℓ] ∈ Θ[ℓ], where Θ[ℓ] is the parameter space for the ℓ-th layer.

• The depth of the network is L. We have that N0 = p (the number of features) and
NL = q (the number of output variables).

• The number of neurons in the network is
∑L

ℓ=1Nℓ.

• Note that in case of networks used for classification we typically have q = K, the
number of classes.

Affine Transformations Followed by Activations

• In deep learning, the function f
[ℓ]

θ[ℓ]
is generally defined by an affine transformation

followed by an activation function.

• Activation functions are the means of introducing non-linearity into the model. We
have seen one such activation function in case logistic regression, where it is called
sigmoid function; see Figure 2.4.

• The output of layer ℓ in feedforward network is represented by the vector a[ℓ] and the
intermediate result of the affine transformation is represented by the vector z[ℓ].

• We typically denote the output of the model via ŷ and hence,

ŷ = a[L] = fθ(x).

• The action of f
[ℓ]

θ[ℓ]
can be schematically represented as follows,

a[ℓ−1] z[ℓ] := W [ℓ]a[ℓ−1] + b[ℓ] a[ℓ] := S[ℓ](z[ℓ]),
Affine

Transformation

f
[ℓ]

θ[ℓ]

Activation (2.2)

Lecture 2: UNSW, Sydney 2-11

x1

x2

...

xp

∑

b

w1

w2

wp

ŷ = σ(b+ w>x)

z = b+
∑p

i=1wixi σ(z) =
1

1 + e−z
∈ (0, 1)

Input
x

Weight, Bias
(w, b)

Affine
Transformation

z

Activation
σ(z)

Output
ŷ

Figure 2.4: Logistic regression represented with neural network terminology as a shallow neural
network. The gray box represents an artificial neuron composed of an affine transformation to
create z and an activation σ(z).

where a[0] = x. Hence the parameters of the ℓ-th layer, θ[ℓ], are given by the Nℓ×Nℓ−1

weight matrix W [ℓ] =
(
w

[ℓ]
i,j

)
and the Nℓ dimensional bias vector b[ℓ] = (b

[ℓ]
i). Thus the

parameter space of the layer is Θ[ℓ] = RNℓ×Nℓ−1 × RNℓ .

• The activation function S[ℓ] : RNℓ −→ RNℓ is a non-linear multivalued function. For
ℓ = 1, . . . , L− 1 it is generally of the form

S[ℓ](z) =
[
σ[ℓ] (z1) . . . σ[ℓ] (zNℓ

)
]⊤

, (2.3)

where σ[ℓ] : R → R is typically an activation function common to all hidden layers.

• For the output layer, ℓ = L, it is often of a different form depending on the task at
hand.

• In the popular case of multi-class classification, a softmax function is used, or more
specifically for binary classification, a sigmoid function is typically used as in the case
of logistic regression.

• Thus, in such a classification framework, the output of the network is a vector of
probability values determining class membership.

• In order to get a class label prediction one can convert the predicted probability scores
into a class label using a chosen threshold as discussed in Week 1.

• Next section presents most poular activation functiosn used in deep learning.

Lecture 2: UNSW, Sydney 2-12

The Forward Pass

• The forward pass equation, (2.1), of a deep neural network can be expanded out as
follows,

Layer 1

 z[1] = W [1]

Input︷︸︸︷
x +b[1]

a[1] = S[1](z[1])

Layer 2

 z[2] = W [2]a[1] + b[2]

a[2] = S[2](z[2])

...

Layer L

z[L] = W [L]a[L−1] + b[L]

ŷ︸︷︷︸
output

= a[L] = S[L](z[L]).

(2.4)

• Thus, for a given input x, when computing fθ(x), we sequentially execute the affine
transformations and activation functions from layer 1 to layer L.

• The computational cost of such a forward pass is at an order of the total number of
weights.

A General Approximation Result

• The expressive power of feedforward neural networks is highlighted by the following
theorem, known as universal approximation theorem, which shows that we can approx-
imate any continuous function on a convex set with the feedforward neural network
with a single hidden layer (L = 2) and identity activations in the second layer.

Theorem

Consider a continuous function f ∗ : K → Rq where K ⊆ Rp is a compact set. Then
for any non-polynomial activation function σ[1](·) and any ε > 0, there exists an N1

and parameters W [1] ∈ RN1×p, b[1] ∈ RN1 , and W [2] ∈ Rq×N1 , such that the function

fθ(x) = W [2]S[1](W [1]x+ b[1]), with S[1] as in (2.3),

satisfies ||fθ(x)− f ∗(x)|| < ε for all x ∈ K.

Lecture 2: UNSW, Sydney 2-13

• Hence, this theorem states that essentially all functions can be approximated to arbi-
trary precision dictated via ε.

• Practically for complicated functions f ∗(·) and small ε one may need large N1. Yet,
the theorem states that it is always possible.

• Note also that the tanh, sigmoid, and ReLU activation functions described in the next
section are some of the valid activation functions for this result.

The Strength of a Hidden Layer

• As we saw in Week 1, shallow neural networks such as logistic regression can be used
to create classifiers with linear decision boundaries.

• However, the expressiveness of models with a single hidden layer (or more), as intro-
duced in the current chapter, can yield a versatile alternative to such shallow networks.

• Consider Figure 2.5 (a) for a classification task based on two inputs x ∈ R2 using
logistic regression.

• By adding a single hidden layer with 4 neurons (sigmoid activation function is used
for all units), we can move beyond the linear boundaries to obtain Figure 2.5 (b).

• Then, by increasing the number of neurons in the hidden layer from 4 to 10 units, the
model further refines the decision boundary as in Figure 2.5 (c).

(a) (b) (c)

Figure 2.5: Binary classification example with x ∈ R2, moving from a shallow neural network
to a model with a hidden layer and then increasing the number of neurons. (a) Sigmoid
model (L = 1). (b) One-hidden layer (L = 2) N1 = 4 neurons. (c) One-hidden layer (L = 2)
N1 = 10 neurons.

Lecture 2: UNSW, Sydney 2-14

2.4 Activation Functions

• As presented in (2.2), each layer ℓ of the network incorporates an activation function
which is generally a non-linear transformation of z[ℓ] to arrive at a[ℓ].

• For most layers of the network, the activation function S[ℓ](·) is composed of a sequence
of identical scalar valued activation functions as in (2.3).

• That is, the ℓ-th layer incorporates a scalar activation function σ[ℓ] : R → R and it is
applied to each of the Nℓ coordinates of z

[ℓ] separately.

• In some models, all the scalar activation functions across all layers will be of the same
form, while in other models different layers will sometimes incorporate different forms
of scalar activation functions.

Scalar Activations and their Derivatives

• There are different scalar activation functions used in deep learning. Choice of a
function is often not based on theory, but rather based on practice and experience over
the years. Here we outline the key activation functions.

• At the onset of the development of deep learning, in the late 1950’s, the step scalar
activation function was used. That is,

σStep(u) =

{
−1 u < 0,

+1 u ≥ 0.
(2.5)

• However, σStep is not used in modern neural network models, primarily because its
derivative σ̇Step(u) = 0 for all u ̸= 0.

• Indeed the derivative of activation functions is important since it is used in the back-
propagation algorithm (see the next section) to compute the gradient of the loss func-
tion with respect to the model parameters.

• The sigmoid activation function (also known as the logistic function), which we studied
in Week 1, is a much more popular choice.

• Note also that its derivative σ̇Sig can be expressed in terms of the function σSig itself,

σSig(u) =
eu

1 + eu
=

1

1 + e−u
, with σ̇Sig(u) = σSig(u)

(
1− σSig(u)

)
.

• A similar popular function is hyperbolic tangent, denoted tanh,

σTanh(u) =
eu − e−u

eu + e−u
, with σ̇Tanh(u) = 1− σTanh(u)

2.

Lecture 2: UNSW, Sydney 2-15

• Both σSig and σTanh share similar qualitative properties as σStep. They are non-
decreasing and bounded. At u → ∞ both functions converge to unity just like σStep

and at u → −∞ the sigmoid function converges to 0 while the tanh function converges
to −1 like σStep.

• In practice when the output ŷ is a probability in [0, 1] using σSig is much more common.

• See Figure 2.6 for plots of several activation functions.

(a) (b)

Figure 2.6: Several common scalar activation functions. (a) The step and tanh function
have a range of (−1, 1) while the sigmoid function has a range of (0, 1). We also plot a
scaled sigmoid to the range (−1, 1) so it can be compared to tanh. (b) The ReLU activation
function and the leaky ReLU variant with different leaky ReLU parameters.

• In earlier applications of deep learning, it was common to choose between models or
layers that use σSig, σTanh, or similar forms.

• However in more recent years, a completely different type of scalar activation function
became popular, namely the rectified linear unitReLU 3 or ReLU,

σReLU(u) = max(0, u) =

{
0 u < 0,

u u ≥ 0,
with, (2.6)

σ̇ReLU(u) = 1{u ≥ 0} =

{
0 u < 0,

1 u ≥ 0.

3Note that source of the name is from electrical engineering where a rectifier is a device that converts
alternating current to direct current.

Lecture 2: UNSW, Sydney 2-16

• A related activation function, leaky ReLU, parameterized by a fixed small ε ≥ 0 (e.g.,
ε = 0.01) and defined via,

σLeakyReLU(u) = max(0, u) + min(0, εu) =

{
εu u < 0,

u u ≥ 0,
with,

σ̇LeakyReLU(u) = 1{u ≥ 0}+ ε1{u < 0} =

{
ε u < 0,

1 u ≥ 0.

Observe that when ε = 0, this is just the ReLU activation function.

• Another variant called PReLU (parametric ReLU) considers the leaky ReLU parameter
ε as a learned parameter. That is, the gradient based optimization for the parameters
of the network also includes improvement steps of ε, incorporating it as part of the
parameters for ℓ-th layer, θ[ℓ].

Non-Scalar Activations and their Derivatives

• Some layers also use non-scalar activation functions. That is, S[ℓ] : RNℓ → RNℓ is a
vector to vector function that cannot be decomposed as in (2.3).

• The most common example of this is the softmax activation function, typically used
for classification (with K classes) in the last layer ℓ = L. In that case, NL = K and

a[L] = SSoftmax(z
[L]), (2.7)

which is defined as

SSoftmax(z) =
1∑K

i=1 e
zi

[
ez1 · · · ezK

]⊤
,

2.5 Backpropagation Algorithm

• Now we focus on computation of the gradient of the loss function with respect to
the parameters so as to facilitate learning using variants of gradient descent method
discussed in Week 1.

• A key algorithm is the backpropagation algorithm which implements backward mode
automatic differentiation.

• We state this algorithm for general recursive model.

• It is instructive to first consider a general recursive feedforward model as appearing in
(2.1). For such a model, the recursive step is of the form a[ℓ] = f

[ℓ]

θ[ℓ]
(a[ℓ−1]).

Lecture 2: UNSW, Sydney 2-17

• However, for our discussion, it is convenient to use notation that treats the function
f [ℓ] separately as a function of a[ℓ−1] and of the parameter θ[ℓ]:

f [ℓ](· ; θ[ℓ]) : RNℓ−1 −→ RNℓ , and f [ℓ](a[ℓ−1] ; ·) : Θ[ℓ] −→ RNℓ .

• Using this notation, the recursive step is,

a[ℓ] = f [ℓ](a[ℓ−1] ; θ[ℓ]), for ℓ = 1, . . . , L, (2.8)

where a[0] = x and ŷ = a[L].

• Given a single data sample (x, y) we assume there is a loss function which depends on
the given parameters θ, on the label value y, and on the output of the model, a[L]. We
denote this loss via C(a[L], y ; θ).

• Our goal is to optimize the loss with respect to θ = (θ[1], . . . , θ[L]).

• For this, we require the gradient with respect to θ and we denote its components via,

g
[ℓ]
θ :=

∂C(a[L], y ; θ)

∂θ[ℓ]
. (2.9)

• Further, we need

Ċ(u) :=
∂C(u, y ; θ)

∂u
, ḟ [ℓ]

a (u) :=
∂f [ℓ](u ; θ[ℓ])

∂u
, ḟ

[ℓ]
θ (u) :=

∂f [ℓ](a[ℓ−1] ; u)

∂u
. (2.10)

• The derivative Ċ(u) is typically a gradient and thus vector valued with length NL.

• The derivative ḟ
[ℓ]
a (u) is typically an Nℓ−1 × Nℓ matrix obtained via a transpose of a

Jacobian and thus matrix valued.

• Finally, the derivative ḟ
[ℓ]
θ (u) may take on various shapes depending on the form of θ.

• En-route to compute the desired gradients (2.9), we require intermediate gradients of
the loss with respect to the activation values a[1], . . . , a[L].

• Keeping in mind that a[L] = ŷ is a function of these activation values, the intermediate
gradients are denoted,

ζ [ℓ] :=
∂C(a[L], y ; θ)

∂a[ℓ]
, ℓ = 1, . . . , L. (2.11)

Lecture 2: UNSW, Sydney 2-18

θ[1] θ[2] θ[L−1] θ[L]

x = a[0] a[1] a[2] a[L−1] a[L]

ζ [1] ζ [2] ζ [L−1] ζ [L]

g
[1]
θ g

[2]
θ g

[L−1]
θ g

[L]
θ

Gradient Values

Parameter Values

Forward

Backward

Loss : C

y, ŷ

Figure 2.7: The variables and flow of information in the backpropagation algorithm for the
general recursive model.

• Now based on the multivariate chain rule, the recursive step (2.8), and the definitions
above, we observe,

ζ [ℓ] =
∂a[ℓ+1]

∂a[ℓ]
∂C

∂a[ℓ+1]
= ḟ [ℓ+1]

a (a[ℓ]) ζ [ℓ+1], g
[ℓ]
θ =

∂a[ℓ]

∂θ[ℓ]
∂C

∂a[ℓ]
= ḟ

[ℓ]
θ (θ[ℓ]) ζ [ℓ]. (2.12)

• Hence once the activation values a[1], . . . , a[L] are populated via forward propagation
of (2.8), backward computation can be carried out via,

ζ [ℓ] =

{
Ċ(a[L]), ℓ = L,

ḟ
[ℓ+1]
a (a[ℓ]) ζ [ℓ+1], ℓ = L− 1, . . . , 1,

(2.13)

and at each step the gradient can be obtained via g
[ℓ]
θ = ḟ

[ℓ]
θ (θ[ℓ]) ζ [ℓ].

• This process backpropagation is illustrated in Figure 2.7, and summarized in Algo-
rithm 1.

Lecture 2: UNSW, Sydney 2-19

Algorithm 1: Backpropagation for the general recursive model

Input: Dataset {(x(1), y(1)), . . . , (x(n), y(n))},
loss function C(·), and
parameter values θ = (θ[1], . . . , θ[L])

Output: gradients of the loss g
[1]
θ , . . . , g

[L]
θ

Compute a[ℓ] for ℓ = 1, . . . , L using (2.8) (Forward pass)
Compute ζ [L] = Ċ(a[L])

Compute g
[L]
θ = ḟ

[L]
θ (θ[L]) ζ [L]

for ℓ = L− 1, . . . , 1 do

compute ζ [ℓ] = ḟ
[ℓ+1]
a (a[ℓ]) ζ [ℓ+1]

compute g
[ℓ]
θ = ḟ

[ℓ]
θ (θ[ℓ]) ζ [ℓ]

end

2.6 Number of Hidden Layers

• Despite the fact that the universal approximation theorem states that almost any
function can be approximated using a neural network model with a single hidden
layer, practice and research has shown that to gain high expressive power, this model
might require a very large number of units (N1 needs to be very large).

• Hence gaining significant expressive power may require a very large number of param-
eters. The power of deep learning then arises via repeated composition of non-linear
activations functions via an increase of depth (an increase of L).

• Note first that if the identity activation function is used in each hidden layer, then the
network reduces to a shallow neural network,

fθ(x) = S[L](W̃x+ b̃),

where,4

W̃ = W [L]W [L−1] · . . . ·W [1], and b̃ =
L∑

ℓ=1

(L∏

ℓ̃=ℓ+1

W [ℓ̃]
)
b[ℓ].

• In the case where the identity function is also used for the output layer, the model
reduces to be a linear (affine) model. Thus, we have no gain by going deeper and
adding multiple layers with identity activations.

4Note that in the expression
∏L

ℓ̃=ℓ+1 W
[ℓ̃] we assume that the product multiplies the matrices in the left

to right order W [L]W [L−1]W [L−2] Further, for ℓ = L the product is taken as the identity matrix.

Lecture 2: UNSW, Sydney 2-20

• Thus, non-linearity obtained by activations in each layer is crucial in building deep
neural networks.

• The expressivity of the neural network comes from the composition of non-linear activa-
tion functions. The repeated compositions of such functions has significant expressive
power and can reduce the number of units needed in each layer in comparison to a net-
work with a single hidden layer. A consequence is that the parameter space is reduced
as well.

	Tasks and Architectures
	Neuron: Motivation for neural networks
	General Feedforward Neural Networks
	Activation Functions
	Backpropagation Algorithm
	Number of Hidden Layers

