
Data Mining and Machine Learning

Lecture 4: Decision Trees and Ensemble Learning
Dr Sarat Moka UNSW, Sydney

Key Topics

• Decision Trees

• Introduction to Ensemble Methods

• Out-of-Bag Approach

• Random Forests

• Boosting Methods

Books:

(A) Data Science and Machine Learning: Mathematical and Statistical Methods, by
Kroese, Botev, Taimre, and Vaisman. Click here to download a pdf copy.

(B) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd Ed.)
by Aurélien Géron (2019).

4-1

https://people.smp.uq.edu.au/DirkKroese/DSML/

Lecture 4: Decision Trees and Ensemble Learning 4-2

4.1 Decision Trees for Classification and Regression

Decision trees are versatile machine learning models used for both classification and re-
gression tasks. They work by recursively partitioning the data space and fitting a simple
prediction model within each partition.

Example

The left panel of Figure 4.1 shows a training set of 15 two-dimensional points (two
features) falling into two classes (red and blue). How should the new feature vector
(black point) be classified?

Figure 4.1: Left: training data and a new feature. Right: a partition of the feature space.

Figure 4.2: The decision- tree that corresponds to the partition in Figure 4.1.

Lecture 4: Decision Trees and Ensemble Learning 4-3

Decision Tree Construction

1. Splitting Criterion: A decision tree splits the data at each node based on a criterion
that maximizes the separation of the data. For classification, the common criteria are Gini
impurity and information gain, while for regression, it is typically the reduction in variance.

Optimal split: Select the feature j∗ and threshold t∗ that yield the best split according to
the chosen criterion. This involves finding the feature-threshold pair (j∗, t∗) that maximizes
(or minimizes, depending on the criterion) the splitting criterion.

2. Recursive Partitioning: Starting with the full training dataset at the root node, the
dataset at each node is recursively partitioned by selecting the feature and threshold that
maximizes the chosen splitting criterion. For a feature j and a threshold t, split the dataset
D into Dleft and Dright:

Dleft = {(x, y) ∈ D | xj ≤ t} (4.1)

Dright = {(x, y) ∈ D | xj > t} (4.2)

where xj is the value of feature j for the data point x. The process is repeated for each child
node until a stopping criterion is met (e.g., maximum depth, minimum number of samples
in a node).

3. Stopping Criteria: The recursive partitioning stops when one of the following criteria
is met:

• Maximum tree depth is reached.

• Minimum number of samples in a node is less than a specified threshold.

• No further information gain or variance reduction is possible.

Splitting using Gini Index

One commonly used criterion for classification is the Gini Index for select the optimal feature
j∗ and threshold t∗. The Gini Index measures the impurity of a node, and our goal is to find
the feature-threshold pair (j∗, t∗) that minimizes the Gini Index after the split, leading to
purer child nodes. To find the best split, we follow these steps:

1. Compute Gini Index for the parent node: Calculate the Gini Index (or, Gini
impurity) for the parent node before the split. At any node with dataset D, the Gini
impurity is defined as:

Gini(D) = 1−
C∑
i=1

p2i (4.3)

where pi is the proportion of samples belonging to class i in dataset D, and C is the number
of classes.

Lecture 4: Decision Trees and Ensemble Learning 4-4

2. Evaluate all possible splits: For each feature j and each possible threshold t (which
can be a midpoint between any two consecutive values of the feature), split the data into
two subsets:

Dleft = {(xi, yi) | xi[j] ≤ t}

Dright = {(xi, yi) | xi[j] > t}

3. Compute Gini Index for the Child Nodes: Calculate the Gini Index for each of the
child nodes resulting from the split.

4. Calculate Weighted Gini Index for the Split: Compute the weighted Gini Index for
the split as follows:

Gsplit(j, t) =
Nleft

N
G(Dleft) +

Nright

N
G(Dright)

where N is the total number of instances in the parent node, Nleft and Nright are the number
of instances in the left and right child nodes respectively, and G(Dleft) and G(Dright) are the
Gini Indices for the left and right child nodes.

5. Select the Best Split: Find the feature-threshold pair (j∗, t∗) that minimizes the
weighted Gini Index:

(j∗, t∗) = argmin
(j,t)

Gsplit(j, t)

Remark

By selecting the feature j∗ and threshold t∗ that minimize the weighted Gini Index,
we ensure that the resulting child nodes are as pure as possible, which leads to more
effective splits and, ultimately, a more accurate decision tree.

Remark

For classification, instead of Gini Index, we can use entropy impurity defined by

Entropy(D) = −
C∑
i=1

pi log2 pi. (4.4)

Lecture 4: Decision Trees and Ensemble Learning 4-5

Example

Let’s consider a simple example with a binary classification problem (two classes: 0
and 1) and one feature 1.
Compute the Gini Index at the parent node: Suppose we have 10 instances at
the parent node, with 6 instances of class 0 and 4 instances of class 1. The Gini Index
for the parent node is:

Gparent = 1−

((
6

10

)2

+

(
4

10

)2
)

= 1− (0.36 + 0.16) = 1− 0.52 = 0.48

Evaluate All Possible Splits: Assume the feature has the values
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with corresponding class labels {0, 0, 1, 1, 0, 0, 1, 1, 0, 1}.
We evaluate splits at midpoints between consecutive values.

Compute Gini Index for Child Nodes: For a threshold t = 5.5:

Dleft = {1, 2, 3, 4, 5} (3 instances of class 0, 2 instances of class 1)

Dright = {6, 7, 8, 9, 10} (3 instances of class 1, 2 instances of class 0)

G(Dleft) = 1−

((
3

5

)2

+

(
2

5

)2
)

= 1− (0.36 + 0.16) = 1− 0.52 = 0.48

G(Dright) = 1−

((
2

5

)2

+

(
3

5

)2
)

= 1− (0.16 + 0.36) = 1− 0.52 = 0.48

Calculate Weighted Gini Index for the Split:

Gsplit(1, 5.5) =
5

10
× 0.48 +

5

10
× 0.48 = 0.48

Select the Best Split: Repeat the above calculations for all possible thresholds and
select the one that minimizes the weighted Gini Index.

Splitting Criterion using Sum of Squared Errors (SSE)

For regression tasks, a commonly used criterion is the Sum of Squared Errors (SSE) to select
the optimal feature j∗ and threshold t∗. The SSE measures the variance within a node, and
our goal is to find the feature-threshold pair (j∗, t∗) that minimizes the SSE after the split,
leading to child nodes with lower variance. To find the best split, we follow these steps:

1. Compute SSE for the parent node: Calculate the SSE for the parent node before

Lecture 4: Decision Trees and Ensemble Learning 4-6

the split. At any node with dataset D, the SSE is defined as:

SSE(D) =
N∑
i=1

(yi − ȳ)2 (4.5)

where yi is the target value for instance i, ȳ is the mean target value of the dataset D, and
N is the number of instances in D.

2. Evaluate all possible splits: For each feature j and each possible threshold t (which
can be a midpoint between any two consecutive values of the feature), split the data into
two subsets:

Dleft = {(xi, yi) | xi[j] ≤ t}

Dright = {(xi, yi) | xi[j] > t}

3. Compute SSE for the Child Nodes: Calculate the SSE for each of the child nodes
resulting from the split:

SSE(Dleft) =
∑

i∈Dleft

(yi − ȳleft)
2

SSE(Dright) =
∑

i∈Dright

(yi − ȳright)
2

where ȳleft and ȳright are the mean target values of the left and right child nodes, respectively.

4. Calculate Weighted SSE for the Split: Compute the weighted SSE for the split as
follows:

SSEsplit(j, t) =
Nleft

N
SSE(Dleft) +

Nright

N
SSE(Dright)

where N is the total number of instances in the parent node, Nleft and Nright are the number
of instances in the left and right child nodes respectively, and SSE(Dleft) and SSE(Dright) are
the SSE for the left and right child nodes.

By evaluating all possible splits and selecting the one that minimizes the weighted SSE, the
decision tree is able to create splits that reduce the overall variance in the target variable,
leading to more accurate predictions.

Prediction

1. Classification: For a given input x, traverse the tree from the root to a leaf node. The
predicted class ŷ is the majority class in the leaf node:

ŷ = argmax
c∈C

 1

|Dleaf|
∑

(xi,yi)∈Dleaf

I(yi = c)

 (4.6)

Lecture 4: Decision Trees and Ensemble Learning 4-7

where Dleaf is the dataset in the leaf node and I is the indicator function.

2. Regression: For a given input x, traverse the tree from the root to a leaf node. The
predicted value ŷ is the mean of the target values in the leaf node:

ŷ =
1

|Dleaf|
∑

(xi,yi)∈Dleaf

yi (4.7)

Evaluation

1. Performance Metrics: Evaluate the performance of the decision tree using appropriate
metrics. For classification, common metrics include accuracy, precision, recall, and the
F1 score. For regression, common metrics include Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

Accuracy =
1

N

N∑
i=1

I(ŷi = yi) (4.8)

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (4.9)

MAE =
1

N

N∑
i=1

|ŷi − yi| (4.10)

2. Visualization: Visualize the decision tree to understand the decision rules and the
structure of the model. Tools such as tree diagrams can be used to illustrate the splits and
the criteria used at each node.

4.2 Introduction to Ensemble Methods

Ensemble methods are a powerful technique in machine learning that combine multiple base
models to produce a single, more robust predictive model. The fundamental idea is that by
aggregating the predictions of several models, the ensemble can achieve better generalization
performance than any individual model. This approach leverages the diversity among the
base models to reduce variance, bias, or both.

Basic Concepts

• Base Models (Learners): Let h1, h2, . . . , hM denote M base models trained on the
same dataset D. Each model hi makes a prediction hi(x) for a given input x.

Lecture 4: Decision Trees and Ensemble Learning 4-8

• Ensemble Model: The ensemble model H combines the predictions of the M base
models. The way these predictions are combined defines the type of ensemble method.
Formally, the prediction of the ensemble model H(x) can be represented as:

H(x) = F(h1(x), h2(x), . . . , hM(x)),

where F is a function that aggregates the base model predictions.

Types of Ensemble Methods

Bagging (Bootstrap Aggregating)

Bagging aims to reduce variance by training each base model on a different bootstrap sample
(a random sample with replacement) of the original dataset. The final prediction is typically
an average (for regression) or majority vote (for classification) of the base model predictions.

• Mathematical Formulation:

H(x) =
1

M

M∑
i=1

hi(x)

for regression, or
H(x) = mode{h1(x), h2(x), . . . , hM(x)}

for classification.

Pasting

Pasting is a method similar to bagging, but it involves creating subsets of the data without
replacement. This means each subset contains unique instances from the original dataset,
and no instance is repeated within a single subset.

• Mathematical Formulation: Given a dataset D = {(xi, yi)}Ni=1, pasting generates
M subsets D1, D2, . . . , DM , each created by sampling without replacement. Each base
learner hi is trained on Di, and the final prediction is an average (for regression) or
majority vote (for classification) of the base learners:

H(x) =
1

M

M∑
i=1

hi(x)

for regression, or
H(x) = mode{h1(x), h2(x), . . . , hM(x)}

for classification.

Lecture 4: Decision Trees and Ensemble Learning 4-9

Boosting

Boosting focuses on reducing bias by sequentially training base models. Each new model is
trained to correct the errors made by the previous models. The final prediction is a weighted
sum of the base model predictions.

• Mathematical Formulation:

H(x) =
M∑
i=1

αihi(x),

where αi are the weights assigned to each base model, often based on their performance.

Stacking

Stacking involves training a meta-model to combine the predictions of multiple base models.
The base models are trained on the original dataset, and the meta-model is trained on the
predictions of the base models.

• Mathematical Formulation: Let H(x) = (h1(x), h2(x), . . . , hM(x)) be the vector of
base model predictions. The meta-model g takes this vector as input:

H(x) = g(H(x)).

Advantages of Ensemble Methods

• Improved Performance: By combining multiple models, ensemble methods often
achieve higher accuracy and robustness compared to single models.

• Reduction in Overfitting: Techniques like bagging reduce overfitting by averaging
out the predictions, which helps to smooth out the errors made by individual models.

• Flexibility: Ensemble methods can be applied to a wide range of base models, in-
cluding decision trees, neural networks, and more.

Theoretical Insights

• Bias-Variance Trade-off: Ensemble methods, particularly bagging and boosting,
help to manage the bias-variance trade-off. Bagging primarily reduces variance, while
boosting can reduce both bias and variance by focusing on difficult-to-predict instances.

Lecture 4: Decision Trees and Ensemble Learning 4-10

• Error Decomposition: The prediction error of an ensemble model can be decom-
posed into three components: bias, variance, and noise. The goal of ensemble methods
is to reduce the bias and variance components, thus minimizing the overall prediction
error.

• Diversity: The success of ensemble methods heavily relies on the diversity among
the base models. Diverse models make different errors, which can be averaged out to
improve overall performance.

4.3 Out-of-Bag (OOB) Approach in Ensemble Meth-

ods

The Out-of-Bag (OOB) approach is a technique used to evaluate the performance of ensemble
methods, specifically in bagging. It leverages the bootstrap sampling process to provide an
internal estimate of the model’s performance without the need for a separate validation set.

Bagging and Bootstrap Sampling

Recall that in bagging, multiple base models are trained on different bootstrap samples of
the original dataset. A bootstrap sample is created by randomly selecting data points from
the original dataset with replacement. Consequently, some data points are included multiple
times in a bootstrap sample, while others are excluded.

Out-of-Bag Samples

For each bootstrap sample, the data points not selected are referred to as out-of-bag (OOB)
samples. These OOB samples can be used to evaluate the performance of the model trained
on the corresponding bootstrap sample.

Mathematically, for a dataset D = {(xi, yi)}Ni=1:

1. Generate M bootstrap samples D1, D2, . . . , DM by sampling N instances with replace-
ment from D.

2. For each bootstrap sample Dm, identify the out-of-bag samples DOOB
m which are the

data points not included in Dm.

3. Train the m-th base model hm on the bootstrap sample Dm.

Lecture 4: Decision Trees and Ensemble Learning 4-11

OOB Prediction and Error

To estimate the performance of the ensemble using OOB samples, follow these steps:

OOB Predictions

For each data point (xi, yi) ∈ D, collect the predictions from all base models for which (xi, yi)
was an OOB sample. LetMi be the set of models for which (xi, yi) is OOB.

The OOB prediction for xi is:

ŷOOB
i =

1

|Mi|
∑

m∈Mi

hm(xi)

where |Mi| is the number of models inMi.

OOB Error

Calculate the OOB error by comparing the OOB predictions ŷOOB
i with the true values yi.

For regression, the OOB error can be measured using Mean Squared Error (MSE):

MSEOOB =
1

N

N∑
i=1

(ŷOOB
i − yi)

2

For classification, the OOB error can be measured using the misclassification rate:

ErrorOOB =
1

N

N∑
i=1

I(ŷOOB
i ̸= yi)

where I(·) is the indicator function, which is 1 if the condition is true and 0 otherwise.

Advantages of OOB Approach

• No Need for a Separate Validation Set: The OOB approach provides an internal
estimate of model performance, eliminating the need to set aside a separate validation
set.

• Efficient Use of Data: Since all data points are used both for training and validation
(but in different bootstrap samples), the OOB approach makes efficient use of the
available data.

Lecture 4: Decision Trees and Ensemble Learning 4-12

• Unbiased Estimate: The OOB error is an unbiased estimate of the true error, as
each data point is evaluated on models that have not seen it during training.

The Out-of-Bag (OOB) approach is a valuable method for evaluating ensemble models,
particularly bagging. By using the data points excluded from each bootstrap sample, the
OOB approach provides an unbiased and efficient estimate of the model’s performance. This
technique leverages the inherent properties of bootstrap sampling to validate the model
without requiring a separate validation set, thereby maximizing the use of available data.

4.4 Random Forests

Random Forests are an ensemble learning method primarily used for classification and re-
gression tasks. They operate by constructing multiple decision trees during training and
outputting the mode of the classes (classification) or mean prediction (regression) of the in-
dividual trees. This approach leverages the power of multiple models to improve the overall
performance and robustness of the prediction.

Construction of Random Forests

The construction of a Random Forest involves the following steps:

1. Bootstrap Sampling: Given a training dataset D with N instances, create B boot-
strap samples Db (where b = 1, 2, . . . , B). Each bootstrap sample is generated by
randomly sampling N instances from D with replacement.

2. Training Decision Trees: For each bootstrap sample Db, train an unpruned decision
tree Tb. During the training of each tree, at each node, a random subset of features is
selected from the total set of features. The best feature-threshold pair is chosen only
from this subset to perform the split.

3. Aggregating Predictions: For a classification problem, the final prediction of the
Random Forest is obtained by majority voting among the B decision trees. For a
regression problem, the final prediction is obtained by averaging the predictions of the
B decision trees.

Mathematical Formulation

Let D = {(xi, yi)}Ni=1 be the training dataset, where xi represents the feature vector and yi
represents the target variable. The steps can be mathematically formulated as follows:

Lecture 4: Decision Trees and Ensemble Learning 4-13

1. Bootstrap Sampling:

Db = {(xi, yi)}Ni=1, where Db is sampled with replacement from D

2. Training Decision Trees: For each bootstrap sampleDb, a decision tree Tb is trained.
At each node, select a random subset of features F ⊆ {1, 2, . . . , p} (where p is the total
number of features), and determine the best split:

(j∗, t∗) = arg min
(Aj ,t)

Impurity(Dleft, Dright)

where Impurity could be the Gini Index, Entropy, or SSE, depending on the problem
type.

3. Aggregating Predictions: For a classification problem, the final prediction ŷ for a
new instance x is:

ŷ = mode{Tb(x)}Bb=1

For a regression problem, the final prediction ŷ is:

ŷ =
1

B

B∑
b=1

Tb(x)

Out-of-Bag Error Estimation

An important property of Random Forests is the ability to estimate the generalization error
using Out-of-Bag (OOB) samples. For each bootstrap sample Db, approximately one-third
of the original instances are not included (out-of-bag samples).

The OOB error estimation involves the following steps:

1. For each instance (xi, yi) in the original dataset, collect the predictions from all trees
that did not use (xi, yi) in their bootstrap sample.

2. Aggregate these predictions (majority vote for classification or mean for regression) to
obtain the OOB prediction ŷOOB,i.

3. Compute the OOB error as follows:

OOB Error =
1

N

N∑
i=1

I(ŷOOB,i ̸= yi) (for classification)

OOB Error =
1

N

N∑
i=1

(yi − ŷOOB,i)
2 (for regression)

By aggregating the predictions from multiple decision trees and leveraging bootstrap sam-
pling, Random Forests achieve better generalization performance and robustness compared
to individual decision trees.

Lecture 4: Decision Trees and Ensemble Learning 4-14

4.5 Boosting Methods

• Boosting is a popular ensemble learning technique that combines multiple weak learners
(typically decision trees) to create a strong learner. It works by sequentially training
new models, where each model focuses on correcting the errors made by its prede-
cessors. The final prediction is made by aggregating the predictions of all models,
typically using a weighted sum.

• Boosting was initially designed for binary classification tasks, but it can be easily
adapted for general classification and regression problems.

• While boosting shares similarities with bagging in that both methods utilize an ensem-
ble of predictive models, there is a key difference between them. In bagging, predictive
models are fitted to bootstrapped subsets of the data independently. In contrast, boost-
ing involves a sequential learning process where each model is trained using information
from the previous models.

Boosting Algorithm

• Similar to other ensemble methods, such as the bagging method, we have a collection
of models, denoted as h1, . . . , hM such that the final model is a function of all the
models.

• The idea is to start with a simple model (weak learner) h1 for the given training data
D = (xi, yi)

n
i=1, and then to improve or “boost” this learner to a learner

g2 := h1 + γ2h2.

Here, the function h2 is found by minimizing the training loss for h1 + h over all
functions h in some class of functions H. For example, H could be the set of prediction
functions that can be obtained via a decision tree of maximal depth 3.

• The parameter γ2 helps in reducing overfitting.

• Given a loss function Loss, the function h2 is thus obtained as the solution to the
optimization problem

h2 = argmin
h∈H

1

n

n∑
i=1

Loss(yi, h1(xi) + h(xi)).

• This process is repeated to get g3 = g2 + γ3h3 = h1 + γ2h2 + γ3h3 via

h3 = argmin
h∈H

1

n

n∑
i=1

Loss(yi, g2(xi) + h(xi)).

This is done until we get gM = gM−1 + γMhM =
∑M

m=1 γmhm, with γ1 = 1.

Lecture 4: Decision Trees and Ensemble Learning 4-15

Algorithm 1: Regression Boosting with Squared-Error Loss

Input: Dataset {(x1, y1), . . . , (xn, yn)},
Number of boosting rounds M , and
shrinkage parameters 1 = γ1, γ2, . . . , γM

Output: Boosted prediction function gM =
∑M

m=1 γmhm

Set g1(x) = h1(x)← 1
n

∑n
i=1 yi.

for m = 2, . . . ,M do

Set ϵ
(m)
i ← yi − gm−1(xi) for all i = 1, . . . , n

Let Dm ← {(xi, ϵ
(m)
i)}ni=1

Fit a model hm using the new dataset Dm and mean-squared error as loss
Set gm ← gm−1 + γmhm.

end
Return gM

Figure 4.3: The left and the right panels show the fitted boosting regression model g1000 with
γ = 1.0 and γ = 0.005, respectively. Note the overfitting on the left.

Remark

The γ parameters controls the speed of the fitting process. Suppose assume that
γ2 = γ3 = · · · = γM = γ. For small values of γ, boosting takes smaller steps towards
the training loss minimization. The step-size γ is of great practical importance, since
it helps the boosting algorithm to avoid overfitting. This phenomenon is demonstrated
in Figure 4.3.

Lecture 4: Decision Trees and Ensemble Learning 4-16

Gradient Boosting

• In the above algorithm, the parameter γm can be viewed as a step size made in the
direction of the negative gradient of the squared-error training loss during the m-th
update.

• To see this,

−∂Loss(yi, z)

∂z

∣∣∣
z=gm−1(xi)

= −∂(yi − z)2

∂z

∣∣∣
z=gm−1(xi)

= 2(yi − gm−1(xi)) = 2ϵ
(m)
i .

• Since hm is trained to predict ϵ
(m)
i , we have

gm(xi) = gm−1(xi) + γmhm(xi) ≈ gm−1(xi) + γmϵ
(m)
i .

Alternatively.

gm(xi) ≈ gm−1(xi)−
γm
2

∂Loss(yi, z)

∂z

∣∣∣
z=gm−1(xi)

,

which is similar to update in gradient descent optimization method.

• One of the significant breakthroughs in boosting theory was the realization that a
gradient descent method could be applied to any differentiable loss function. This led
to the development of the algorithm known as gradient boosting.

• In particular, in gradient boosting, in the m-th iteration, we compute

r
(m)
i = −∂Loss(yi, z)

∂z

∣∣∣
z=gm−1(xi)

, i = 1, . . . , n,

and obtain hm as

hm = argmin
h∈H

1

n

n∑
i=1

(r
(m)
i − h(xi))

2.

AdaBoost (Adaptive Boosting)

• AdaBoost is another popular boosting algorithm. It assigns higher weights to the
misclassified samples in each iteration, allowing subsequent weak learners to focus
more on the difficult-to-classify instances.

• The idea of AdaBoost is similar to the one presented in the regression setting, that is,
AdaBoost fits a sequence of prediction functions g1 = h1, g2 = h1 + h2, . . . with final
prediction function

gM =
M∑

m=1

hm,

Lecture 4: Decision Trees and Ensemble Learning 4-17

where each weak learner hm is of the form

hm(x) = γmcm(x),

with cm is a proper classifier from a class of weaker classifiers C. To get this classifier,
we solve

(γm, cm) = argmin
γ≥0,c∈C

1

n

n∑
i=1

Loss(yi, gm−1(xi) + γc(xi)).

Remark

The inventors of the AdaBoost method considered a binary classification prob-
lem, where the response variable belongs to the −1, 1 set. In this case the loss
function is defined as

Loss(y, ŷ) = exp(−yŷ).

	Decision Trees for Classification and Regression
	Introduction to Ensemble Methods
	Out-of-Bag (OOB) Approach in Ensemble Methods
	Random Forests
	Boosting Methods

